A new graphical principle for the evaluation of Fourier transforms. By H. J. Grenville-Wells.* Department of Chemical Crystallography, University College, Gower Street, London W.C.1, England

(Received 4 July 1955)

It has been shown (Grenville-Wells, 1954) that if in a [001] projection of a unit cell the normal to the planes ($h k 0$) is graduated with a sine or cosine function whose period is that of the interplanar spacing, then a circle with its centre at ($\frac{1}{2} x, \frac{1}{2} y$), passing through the origin, will cut the normal to $(h k 0)$ at the value of $\sin 2 \pi(h x+k y)$ or $\cos 2 \pi(h x+k y)$, and that this offers a very rapid graphical method of evaluating structure factors like $F(h k 0)$.

This note describes the application of the same geometrical principle to the calculation of structure factors at non-integral as well as integral values of h and k, thus permitting the rapid evaluation of Fourier transforms.

In a square [001] projection of the unit cell of a crystal (Fig. $\mathrm{l}(a)$) the traces of the planes $(h k 0)$, where k is constant ($k=2$ in Fig. 1(a)), will radiate from the point A. The normals $F(0,2), F(1,2)$ and $F(2,2)$ to these planes intersect the planes themselves at points A, B and C which lie on the circle $O A B C$ having its centre at P and of radius $O P=\frac{1}{2} O A$. It follows that if k is kept constant, the circle $O A B C$ is the locus of the first maximum, along the normal to $(h k 0)$, of the function $\cos 2 \pi(h x+k y)$ for all values of h, whether integral or non-integral.

Thus if the line $F(0, k)$ is graduated as finely as desired (at 15° intervals in the chart shown in Grenville-Wells (1954)), and each graduation is made the diameter of a circle, a chart of the type shown in Fig. 1(b) will result, i.e. a chart for evaluating the set of structure factors $F(h k 0)$ having a common index k for all values of h from 0 to k. On it any selected $F(h k)$ line (like $O Q=$
($F 0 \cdot 6,2 \cdot 0$) in the diagram) is thereby graduated, $F(h, k)$ being the line through O making an angle $\tan ^{-1}(h / k)$ with $O Y$. This graduated line is then used to find the value of the corresponding structure factor, as described in the paper quoted above.

A single chart of this type can be used to evaluate structure factors accurately up to very high orders, since the value of the function $\cos 2 \pi(h x+k y)$ is obtained either from the intersection of the line $F(h, k)$, divided into ($h+k$) parts, with the circle centred at ($\frac{1}{2} x, \frac{1}{2} y$); or from the intersection of a line of the same length divided into $(h+k) / n$ parts and the circle centred at ($\frac{1}{2} n x, \frac{1}{2} n y$). For example, in Fig. $1(b)$ the line $O Q$ could be used to obtain $F(3,10)$ with a set of circles centred at ($5 x / 2,5 y / 2)$.

As would be expected, much greater accuracy is ob. tained by drawing several sets of circles for successive multiples of the atomic co-ordinates in a trial structure (which only takes a few minutes per set) and using them in conjunction with a few carefully drawn large-scale charts of this type, than by trying to graduate high - order $F^{\prime}(h k 0)$ charts accurately.

Constant-k charts of this type thus have an advantar. over charts on which $F(h k 0)$ lines are drawn for diffcrent values of both h and k, in that they can be used both for structure factors (integral values of h and k) and Fourier transforms (non-integral values of h and k). As in (irell. ville-Wells (1954), interchange of the x and y axes, by reversing the tracing carrying the circles, converts the constant-k charts into constant-h charts.

References

Grenville-Wells, H. J. (1954). J. Appl. Phys. 25, 485.

Fig. 1.

